

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Instrument Transformers for Power Quality

www.inrim.it

Inductive VTs: a comparative analysis of performances under PQ disturbances

IT4PQ - Final workshop Torino, June 22nd, 2023, Istituto Nazionale di Ricerca Metrologica (INRIM)

Letizia Palma Sara

- 1. Background and motivation
- 2. Reference system for VTs laboratory calibration
- 3. Experimental tests Comparative analysis
- 4. Discussion of results and conclusion

IT4PQ Project: Trigger and motivation

Need to monitor the Power Quality (PQ) at Medium Voltage \Rightarrow estimated annual cost for poor PQ equal to \in 150 billion for the EU

Reference generation and measurement system

MV test waveform generation:

- NI AWG 5422, 16 bit, \pm 12 V, 200 MHz.
- High-voltage power amplifier \pm 30 kV_{pk}, \pm 20 mA from DC to 2.5 kHz at full voltage and to 30 kHz at reduced voltages.

Measurement system:

- Reference sensor: 30 kV wideband resistive-capacitive voltage divider designed, built, and characterized at INRIM.
- Comparator includes NI DAQ with various modules (from \pm 0.5 V to \pm 425 V).

Experimental tests - PQ Phenomena

Stationary - FH1: $v_{\text{FH1}}(t) = \sqrt{2}U_{\text{n}}\sin(2\pi ft) + \sqrt{2}U_{\text{h}}\sin(2\pi hft + \Delta \varphi_h)$

Low order harmonics:

- $-U_{\rm n}$ and f at rated amplitude and frequency
- $-U_{\rm h}$ equal to 1 % of $U_{\rm n}$
- *−h* from 2 to 9

Oscillatory

Transient

 $-\Delta\phi_h$ 9 point in [- π , π]

- Harmonics:
- $-U_{\rm n}$ and f at rated amplitude and frequency
- $-U_{\rm h}$ equal to 1 % of $U_{\rm n}$
- -h from 10 to 180 (9 kHz)
- $-\Delta \phi_h$ equal to 0 mrad

PQ performance index:

•
$$\varepsilon_{h,100} = 100 \cdot \frac{k_{\rm r} U_{{\rm s},h} - U_{{\rm p},h}}{U_{{\rm p},h}}$$

Harmonics

Transient - OT:
$$v_{0T}(t) = \sqrt{2}U_n \sin(2\pi f t) + \sqrt{2}U_{0T} \sin(2\pi f_{0T} t + \varphi_{0T}) \cdot e^{-t/\tau}$$

 $-U_{\rm n}$ and f at rated amplitude and frequency $-f_{\rm OT}$ = from 500 Hz to 7 kHz, τ =600 µs, $\varphi_{\rm OT}$ =0 rad $-U_{\rm OT}$ =22 % of $U_{\rm n}$,

PQ performance index:

- $\epsilon_{pk,\%} = 100 \cdot (U_{pk,s} / U_{pk,p} 1)$
 - $\Delta t_{\text{zero-crossing}}$
- $\mathbf{\epsilon}_{\tau} = 100 \cdot (\tau_{s}/\tau_{p} 1)$

Devices under test

VT	Primary Voltage (kV)	Accuracy Class	Manufacturer	Application (indoor - outdoor)
VT1	20/√3 kV	0.5	S	indoor
VT2	20/√3 kV	0.2	S	indoor
VT3	20/√3 kV	0.5	F	indoor
VT4	20/√3 kV	0.5	S	outdoor
VT5	30/√3 kV	0.5	S	indoor
VT6	11/√3 kV	0.5	F	indoor
VT7	11/√3 kV	0.5	С	indoor

Example of comparative analysis

- VT1 vs VT5 and VT3 vs VT6 → Rated primary voltage
- VT1 vs VT3 and VT6 vs VT1 \rightarrow Manufacturer
- VT1 vs VT2 \rightarrow Accuracy class
- VT1 vs VT4 \rightarrow Application

Experimental tests: FH1 \Rightarrow Rated primary voltage

- Increasing the voltage decreases the useful bandwidth (\rightarrow known in scientific literature)
- Increasing the voltage decreases the low-order harmonic error

 \rightarrow Same findings from comparison of VT3 (20/ $\sqrt{3}$ kV) with VT6 (11/ $\sqrt{3}$ kV) harmonic responses.

Ratio error >20 %

Experimental tests: FH1 \Rightarrow Manufacturer (2/2)

Both cases:

The higher the errors at low-order harmonics, the higher the first resonance frequency.

Experimental tests: FH1 \Rightarrow Accuracy class

Events	Freque	ncy (Hz)
	VT1	VT2
First resonance	~8100	~8500
Ratio error >5 %	4100	4100
Ratio error >10 %	5400	5250
Ratio error >20 %	6500	6800

Experimental tests: FH1 \Rightarrow Application indoor and outdoor

Events	Frequency (Hz)		
	VT1	VT4	
First resonance	~8100	~6000	
Ratio error >5 %	4100	3000	
Ratio error >10 %	5400	4100	
Ratio error >20 %	6500	4600	

Experimental tests: Oscillatory Transient

Results	VT3	20/√3 kV		0.5	F	indoor
	VT6	11/√3 kV		0.5	F	indoor
		VT3				
Frequency (Hz)	ε _{pk} (%)	∆t _{zero-crossing} (ms)	ε _τ (%)		10	
500	0.40	0.01	-0.36			
1000	0.37	0	0.49		0 0 0 0	
2000	-3.17	0	-1.01			
5000	-7.20	-0.01	4.52	(% .	10	0
		VT6		irror (VT3 - ε (%)	
Frequency (Hz)	ε _{pk} (%)	∆t _{zero-crossing} (ms)	ε, (%)	Ш	ΥΤ6-ε	
500	0.76	0	-0.29		20 Ο ^{VT3 - ε} _{pk}	\sim
1000	-0.47	0	0.03		ντ6 - ε pk	
2000	-0.23	0	0.02	-	30	
5000	-2.1	0	2.36		0 1000 2000 3	

Correlation between the frequency responses of the VTs and the errors they introduce in the measurement of the OTs.

 \rightarrow VT3 and VT6 exhibit similar behavior in the first frequency band (up to 1 kHz) and in this range the ε_{pk} values are similar.

- \rightarrow As the frequency increases, the frequency responses of VT3 and
- **12** VT6 start to diverge, and consequently, the ε_{pk} values also change.

Discussion of results and conclusion

- From all the performed experimental tests, it is found that the higher the first resonance frequency the higher the nonlinearity effects.
- ✓ Considering VTs from the same manufacturer, it is possible to assume the frequency response as a function of primary voltage.
- ✓ Two VTs with the same primary voltage from different manufacturers can exhibit a very different frequency behavior.
- ✓ Improving the accuracy class does not increase the useful bandwidth but reduces the error associated with the measurement of the first harmonics (reduces the non-linearity effect).
- ✓ There is a strong correlation between the errors introduced by the VT in the measurement of oscillatory transient and their frequency response.

Characteristics	Impact on useful bandwidth (first resonance frequency)	
	Low	High
Primary voltage		Х
Manufacturer		Х
Accuracy class	Х	
Application indoor- outdoor		X

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

THANKS FOR YOUR ATTENTION!

The project 19NRM0 IT4PQ has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme

