IT4PQ Final Workshop

Definition of framework test conditions and metrics

Mario Luiso

IT4PQ 3rd Final Workshop 22nd June 2023

degli Studi della Campania Luigi Vanvitelli Dipartimento di Ingegneria

Acknowledgement

The project 19NRM05 IT4PQ has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme

Main objective

Acuracy specifications of PQ instruments (or PMUs)

Accuracy specification of ITs used for PQ Measurements

They should be

consistent!

• Basic time frame for the evaluation of Performance Indexes

della Campania Luioi Vanvitelli Mario Luiso 22nd June 2023

Possible choice of Basic Time Frame

• In the PQ Accuracy Tests of ITs, the basic time frame for the evaluation of Performance Indexes can be

200 ms

or 10 cycles of the fundamental component

- Basic time frame for the evaluation of Performance Indexes
- Selected PQ phenomena and related ranges

Selected PQ phenomena and related ranges

PQ Phenomenon	Limits
Frequency deviation	$\pm 15\%$ of rated frequency
Supply voltage and current deviation	From 5% up to 200% of amplitude rated voltage From 1% up to 200% of amplitude rated current
Harmonic voltage	10% from 2nd up to 15th—5% from 16th up to 50th 2% from 51th up to 9 kHz
Interharmonic voltage	3% from DC up to 20 Hz—5% from 20 Hz up to 100 Hz 1% from 100 Hz up to 9 kHz
Amplitude and phase modulation	Frequency modulating from 0.1 Hz up to 5 Hz— $K_x = 0.1\%$ Frequency modulating from 0.1 Hz up to 5 Hz— $K_a = 0.1$ rad
Oscillatory Transient	Up to 5 kHz, up to 22% of rated amplitude

Università
degli Studi
della Campania
Luigi Vanvitelli

- Basic time frame for the evaluation of Performance Indexes
- Selected PQ phenomena and related ranges
- Possible choices of Performance Indices

Performance indexes for subharmonic measurements

IEC 61000-4-7 General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto

$$\varepsilon_g = \frac{k_r Y_{s,g} - Y_{p,g}}{Y_{p,g}}$$

Ratio Error Of Grouping Frequency Y_g the RMS of a grouping frequency

$$\varepsilon_{f_sub} = \frac{k_r Y_{s,f_sub} - Y_{p,f_sub}}{Y_{p,f_sub}}$$

Ratio Error of subharmonic frequency

Pls for Steady State PQ phenomena

Pls for Dynamic PQ phenomena

$$\varepsilon = 100 \cdot \frac{k_r |V_s| - |V_p|}{|V_p|}$$

$$\Delta \varphi = \measuredangle V_s - \measuredangle V_p$$

$$TVE = \sqrt{\frac{\left(Re(k_r V_s) - Re(V_p)\right)^2 + \left(Im(k_r V_s) - Im(V_p)\right)^2}{Re(V_p)^2 + Im(V_p)^2}}$$
$$FE = f_{0,s} - f_{0,p}$$
$$RFE = \frac{df_{0,s}}{dt} - \frac{df_{0,m}}{dt} = ROCOF_s - ROCOF_p$$

Università
 degli Studi
 della Campania
 Luigi Vanvitelli

Pls for Transient PQ phenomena

$$v_{OT}(t) = \sqrt{2} U_{OT} \sin(2\pi f_{OT} t + \varphi_{OT}) \cdot e^{-t/\tau}$$

• The change in first peak magnitude value $U_{pk} = \sqrt{2}U_{OT}$

$$\varepsilon_{\text{Upk}} = 100 \cdot \left(\frac{U_{\text{pk,s}} - U_{\text{pk,p}}}{U_{\text{pk,p}}} - 1 \right)$$

- Oscillation frequency f_{OT} of the damped sine wave.
- Phase displacement (or time shift) of the damped sine wave.
- Decay time τ of the oscillation.

These parameters can be analyzed in the time domain after filtering the 50 Hz component by fitting the damped sinusoid

Summary of possible PIs

Test Category	Test Type	Quantity to Measure	Performance Index
Steady State	Amplitude and Frequency Variation	Amplitude	Ration error $\varepsilon(\overline{f})$
	1 1 7	Phase	Phase error $\Delta \varphi(\overline{f})$
		Amplitude	Ratio error $\varepsilon(\overline{f})'$
	Harmonics and Interarmonics	Phase	Phase error $\Delta \varphi(\overline{f})$
		Total Distortion	Total frequency error ϵ_{TFrD}
Dynamic	Amplitude modulation Phase modulation Frequency Ramp	Amplitude Phase Combination of amplitude and phase Frequency	Ratio error ε Phase error $\Delta \varphi$ Total Vector Error <i>TVE</i> Frequency Error <i>FE</i> Rate of change of Frequency Error <i>RFE</i>
Transient	Oscillatory Transient	Peak magnitude Time shift Decay time	Error peak magnitude $\varepsilon_{ m Upk}$ Time shift error $\Delta t_{ m zero-crossing}$ Devay time error $arepsilon_{ au}$

- Basic time frame for the evaluation of Performance Indexes
- Selected PQ phenomena and related ranges
- Possible choices of Performance Indices
- Possible waveforms to use in the PQ accuracy tests

Waveforms for PQ accuracy tests

- Fundamental component
- Harmonic components
- Interharmonic components

$$s_H(t) = \sum_{h=2}^{N_H} A_h \sqrt{2} \sin(2\pi h f_1 t + \varphi_h)$$

$$s_I(t) = \sum_{i \in I} A_i \sqrt{2} \sin(2\pi f_i t + \varphi_i)$$

 $s_1(t) = A_1 \sqrt{2} \sin(2\pi f_1 t)$

Nи

$$X_a = X_m [1 + k_x \cos(2\pi f_x t)] \cos(2\pi f_0 t + \varphi) \approx$$

$$X_a = X_m \cos(2\pi f_0 t + \varphi + k_x \cos(2\pi f_x t)) \mathtt{m}$$

Modulation tests

$$v_{OT}(t) = \sqrt{2} U_{OT} \sin(2\pi f_{OT}t + \varphi_{OT}) \cdot e^{-t/\tau}$$

Single Phenomenon or Multiple Phenomena?

- In general, ITs can be non linear
- Waveforms should be realistic, representative of real situations that can be encountered in power system
- Fundamental should always be present
- But the presence a specific phenomenon can influence the accuracy of the IT in the measurement of another phenomenon

Time combined waveforms

$$s_{TC}(t) = s_1(t) + \sum_k rect\left(\frac{t - t_k}{T_k}\right) \cdot s_k(t) + \sum_d rect\left(\frac{t - t_d}{T_d}\right) \cdot s_d(t)$$

- s_1 is the fundamental component
- *rect* is the rectangular function, centered in $t = t_k$ and duration T_k
- s_k is the k th PQ phenomenon, against which evaluate IT accuracy
- s_d is the d th disturbance (another PQ phenomenon not included in the accuracy evaluation or, extending the concept, an influence factor)

- Basic time frame for the evaluation of Performance Indexes
- Selected PQ phenomena and related ranges
- Possible choices of Performance Indices
- Possible waveforms to use in the PQ accuracy tests
- Example of a PQ accuracy test

Time window	Event	Possible IT-PIs
T1	Only fundamental component	$\varepsilon_1, \Delta \varphi_1, TVE_1$
T2	Fundamental component plus 2nd harmonics	$\varepsilon_1, \Delta \varphi_1, TVE_1, \varepsilon_2, \Delta \varphi_2, TVE_2$
Т3	Fundamental component plus 2nd harmonic and 55 Hz interharmonics	$ \begin{array}{c} \varepsilon_1, \Delta \varphi_1, TVE_1, \varepsilon_2 , \Delta \varphi_2, TVE_2, \varepsilon_{55Hz}, \Delta \varphi_{55Hz}, \\ TVE_{55Hz} \end{array} $
T4	Fundamental component plus 55Hz interharmonics	$ \begin{array}{c} \varepsilon_1, \Delta \varphi_1, TVE_1, \varepsilon_{55Hz}, \Delta \varphi_{55Hz}, TVE_{55Hz}, \Gamma_{TVE_1}, \\ \Gamma_{TVE_{55Hz}} \end{array} $
Т5	Fundamental component with 55Hz interharmonics and low frequency disturbance	$\varepsilon_1, \Delta \varphi_1, TVE_1, \varepsilon_{55Hz}, \Delta \varphi_{55Hz}, TVE_{55Hz}$
Т6	Fundamental component with low frequency disturbance	$\varepsilon_1, \Delta \varphi_1, TVE_1$
Τ7	Only fundamental component	$\varepsilon_1, \Delta \varphi_1, TVE_1$

Università degli Studi
della Campania Luigi Vanvitelli

TABLE I.	NUMERICAL VALUES OF THE TIMES $T_{\mbox{\tiny K}}$
T_1	0.2 s
T_2	0.4 s
T_3	0.6 s
T_4	2.6 s
T ₅	4.6 s
T_6	4.8 s

 Università degli Studi
 della Campania Luigi Vanvitelli

• Commercial VT, 3 kV / 100 V, 50/60 Hz, 0.5 accuracy class

Fig. 7 Ratio error, phase error and TVE at fundamental frequency versus time, with different values of the fundamental amplitudes.

Fig. 8 Ratio error, phase error and TVE at the second harmonic frequency versus time, with different values of the fundamental amplitudes.

• Commercial VT, 3 kV / 100 V, 50/60 Hz, 0.5 accuracy class

Fig. 9 Ratio error of the second interharmonic group, second centered interharmonic subgroup and first harmonic subgroup versus time, with different values of the fundamental amplitudes.

Università degli Studi
della Campania Luigi Vanvitelli

Conclusions

- Accuracy specification of PQ instruments (or PMUs) and ITs should be consistent, in order to easily select the best ITs for a PQ instrument
- A selection of PQ phenomena (already standardized) and related variation ranges to use in PQ accuracy tests for ITs was done
- A proposal of possible Performance Indexes to evaluate the accuracy of an IT versus a specific PQ phenomenon was done
- Experimental results show that complex waveforms, with combinations of different phenomena, should be used in the tests
- In this way, the influence of a specific phenomenon on the accuracy of an IT in the measurement of another phenomenon can be evaluated

IT4PQ Final Workshop

Definition of framework test conditions and metrics

Mario Luiso

IT4PQ 3rd Final Workshop 22nd June 2023

Dipartimento di Ingegneria