IT4PQ Final Stakeholder Workshop

Simplified test procedures for frequency characterization of inductive VTs

Mario Luiso

IT4PQ Final Workshop 22nd June 2023

degli Studi della Campani*:* Luigi Vanvitelli Dipartimento di Ingegneria

Acknowledgement

The project 19NRM05 IT4PQ has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme

Simplified Procedures: Target

Characterize Inductive MV VT For <u>Harmonics</u> Measurement Currently, two main approaches are adopted:

Simplified Procedures: Description

New Proposed Approach: <u>2-steps</u> procedure for VTs frequency response measurement

STEP 1

Measurement of the VT:errors at power frequency and rated amplitude

(ε_{50 Hz}, Δφ_{50 Hz}) → first 10-15 harmonic spurious tones

STEP 2

Simplified Procedures: Description

HV output

High Voltage

Amplifier

New Proposed Approach: 2-steps procedure for VTs frequency response measurement

STEP 1

- errors at power frequency and rated amplitude
 - ➢ first 10-15 harmonic spurious tones

STEP 2

E-SINDICOMP and SINDICOMP-LV: Preliminary Step (1/2)

Shared Preliminary Step: Non Linearity Compensation

Harmonic Distortion \Rightarrow

Spurious harmonic generated by the fundamental tone because of the B-H curve non-linearity of the VT.

E-SINDICOMP and SINDICOMP-LV: Preliminary Step (1/2)

Shared Preliminary Step: Non Linearity Compensation

Combination of the harmonic applied to the input of the VT and the spurious harmonic generated by the fundamental.

E-SINDICOMP and SINDICOMP-LV: Preliminary Step (2/2)

SINDICOMP: SINusoidal characterization for DIstortion COMPensation

 U_h = 1 % of rated voltage

More information: A. Cataliotti et al., "Compensation of Nonlinearity of Voltage and Current Instrument Transformers," in IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 5, pp. 1322-1332, May 2019, doi: 10.1109/TIM.2018.2880060.

E-SINDICOMP: Description

APPROXIMATED <u>RATIO ERROR</u> FREQUENCY RESPONSE:

- 1. the VT ratio error at power frequency and rated amplitude $\varepsilon_{50 \text{ Hz}}$
- 2. the low voltage frequency responses $\epsilon_{LV}(f)$,
- 3. the $\tau(f)$ curve obtained through the study of the derivative **D** of the low voltage frequency response $\varepsilon_{LV}(f)$.

More information: G. Crotti, G. D'Avanzo, D. Giordano, P.S. Letizia, M. Luiso, "Extended SINDICOMP: Characterizing MV Voltage Transformers with Sine Waves", Energies 2021, 14, 1715, doi: 10.3390/en14061715

SINDICOMP-LV: Description (1/2)

APPROXIMATED <u>RATIO ERROR</u> FREQUENCY RESPONSE:

- 1. the low voltage frequency responses $\varepsilon_{LV}(f)$ (\blacksquare),
- 2. the $\varepsilon_{FIT}(f)$ function (\bigcirc)

3. the VT ratio error at rated frequency and rated amplitude ε_1 (\triangle)

Linear effects are predominant on the non-linear behaviour

More information: G. Crotti, D. Giordano, G. D'Avanzo, P.S. Letizia, M. Luiso, "A New Industry-Oriented Technique for the Wideband Characterization of Voltage Transformers", Measurement, Volume 182, 2021, 109674, ISSN 0263-2241, doi: 10.1016/j.measurement.2021.109674

SINDICOMP-LV: Description (2/2)

APPROXIMATED <u>PHASE ERROR</u> FREQUENCY RESPONSE:

- 1. the low voltage frequency responses $\Delta \phi_{LV}(f)$ (
- 2. the fit function with the parameter **a** and **b** found for the ratio error approximation (**(**)
- 3. the VT phase error at rated frequency and rated amplitude $\Delta \varphi_1$ (\triangle)

More information: G. Crotti, D. Giordano, G. D'Avanzo, P.S. Letizia, M. Luiso, "A New Industry-Oriented Technique for the Wideband Characterization of Voltage Transformers", Measurement, Volume 182, 2021, 109674, ISSN 0263-2241, doi: 10.1016/j.measurement.2021.109674

E-SINDICOMP: Application

• Device under test: MV inductive VT

20/ $\sqrt{3}$ kV / 100 / $\sqrt{3}$ V; 30 VA; 0.5 accuracy class

• SFS at 40 V

D _{lim}	f _{Dlim}	f _{lim}
(0.01/Hz)	(Hz)	(Hz)
-0.15	2500	800

SINDICOMP-LV: Application

- Device under test: MV inductive VT
 20/√3 kV / 100 /√3 V; 30 VA; 0.5 accuracy class
- **SFS** at 7 V

 $f_{\rm R}$

(Hz)

5900

f_{start}

(Hz)

2450

f stop

(Hz)

4900

а

(S)

0.2

b

1.7

@ 400 Hz: from -1.14 % to 0.08% and from -2.67 mrad to -0.5 mrad
@ 1.2 kHz: from 1.18 % to -0.10% and from -1.88 mrad to -0.54 mrad
@ 3.5 kHz: from 1.05 % to -0.43% and from -2.65 mrad to -0.58 mrad

E-SINDICOMP vs SINDICOMP-LV: Comparison among the two techniques

Conclusion

- ✓ Two simplified procedures (E-SINDICOMP and SINDICOMP-LV) for the measurement of the frequency response of the MV VTs in common industrial laboratories.
- ✓ The E-SINDICOMP technique provides a method for the only approximation of VT ratio error response whereas SINDICOMP-LV allows to build the VT frequency response in terms of both amplitude and phase.
- The simplified methods have been applied for the frequency characterization of three different VTs and validated by comparison with results obtained using the FH1 reference measurement method.
- Both the simplified procedures allow reaching an accuracy improvement with respect to the use of a conventional LV SFS technique up to one order of magnitude for the ratio error.
- ✓ The results provided by the two simplified techniques are then compared with each other and it is found that SINDICOMP-LV produces a better approximation of the VT ratio error frequency response. In particular, SINDICOMP-LV accuracy performance in the VT ratio error evaluation is found within 0.4% up to 20th harmonic, and within 1% close to the resonance frequency; as to the phase error, it is always within 0.8 mrad.

IT4PQ Final Workshop

Simplified test procedures for frequency characterization of inductive VTs

Mario Luiso

IT4PQ Final Workshop 22nd June 2023

degli Studi della Campania *Luigi Vanvitelli* Dipartimento di Ingegneria