

"The project 19NRM0 IT4PQ has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme."

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Reference system for the assessment of current transformer's PQ performances

19NRM05 IT⁴PQ Final Workshop

22 June 2023, INRIM, Torino, Italy

Yeying Chen (陈叶盈), <u>Enrico Mohns</u> National Metrology Institute of Germany- PTB Working group 2.32 "Time-synchronized Measuring Systems and Sensors " Email: <u>yeying.chen@ptb.de</u>

AG 2.32, Yeying Chen

- 1. Reference system for current sensors
- 2. Measurement under Power Quality (PQ) phenomena
- 3. Measurement uncertainties
- 4. Conclusion and Outlook

Measurement methods and test procedures for assessing accuracy of instrument transformers for power quality measurements

Short Name: IT4PQ, Project Number: 19NRM05

"This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme."

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

1. Reference system for the current sensors

Figure 1: The setup of the reference measurement system for the current sensors

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

AG 2.32, Yeying Chen

For any kind of analogue current sensors (conventional or non-conventional) or current sensors with digital output, which include the associated Merging unit / Standalone merging unit (MU/SAMU)

Components

- a high current generation system
- i. a set of analogue reference current transformers (CTs) with precision resistors
- iii. a precision 2-channel measuring system
- v. synchronization signals
- /. SV receiver box

DUT : Device Under Test

1. Reference system for the current sensors

EXAMPLES OF GENERATION CAPABILITIES

Sinusoidal Signal with harmonics (10%, up to 50th) up to 1 kA - rose red curve

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

AG 2.32, Yeying Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

Rectangle Signal up to 1 kA - rose red curve

Generation of sinusoidal signals – blue curve

f in Hz	I _p * in A
50	1000
200	1009
500	1002
1000	815
2000	420
5000	158

Generated currents of the source system

Amplitude Modulated Signal - rose red curve

National Metrology Institute

1. Reference system for the current sensors

Reference Current-to-Voltage (C-to-V) transformer set

- A symmetrical current transformer (CT) with a precise measuring resistor
- Bandwidth: 16 Hz ... 12 kHz

Table 1: Parameters of the C-to-V transformer set							
Туре	N p	I _{P,r} in A I _{S,r}		<i>R</i> _m (1V)			
СТ50	1,, 6	<mark>8.3</mark> ,, 50	100 mA	10 Ω			
CT200	1,, 4	50,, 200	400 mA	2.5 Ω			
СТ600	1,, 4	150,, 600	400 mA	2.5 Ω			
CT1500	1,, 3	500,, <mark>1500</mark>	1 A	1 Ω			

Symmetrical CTs

- Symmetrical winding design for providing several ranges with identical errors
- |E| < 10⁻⁵ at power frequency
- |E|(f < 12 kHz) below 0.1 % and 0.2 crad,
 |U|(f < 12 kHz) below 0.01 % and 0.03 crad (k = 2)

Resistor box (1 Ohm to 20 Ohm)

- $|\mathsf{E}| < 2^{*}10^{-5}$ at power frequency
- Flat frequency response (< 12 kHz) with time constant below ±1 ns

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

AG 2.32, Yeying Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

Figure 2: The accomplished wideband current-to-voltage transformer set for currents up to 2 kA. The symmetrical current transformers (above) and the front panel of the associated precise measuring resistor box (below)

1. Reference system for the current sensors (new)

Reference Current-to-Voltage (C-to-V) transformer set – uncertainties under PQ (CT 200)

• Spread of CT200 with harmonics or interharmonics are within \pm 30 μ V/V and \pm 50 μ rad.

The frequency response of CT200 and the errors of CT200 under PQ harmonics / interharmonics. (left: ratio errors, right: phase errors. #1 represents the frequency response given by single-tone inputs of 40 A. #2 represents the errors given by dual-tone harmonics: f0 = 50 Hz, A0 = 40 A with n = 2 ($5 \% \cdot A0$) / 3 ($10 \% \cdot A0$) / 50 ($1 \% \cdot A0$) / 100 ($1 \% \cdot A0$) / 180 ($1 \% \cdot A0$). #3 represents the errors given by multi-tone harmonics: 40 A of the fundamental signal and 1 / n of the nth harmonic signals, n is the odd number from 3 up to 179. #4 represents the errors given by dual-tone interharmonics: f0 = 50 Hz, A0 = 40 A with n = 1.5 ($5 \% \cdot A0$) / 7.5 ($10 \% \cdot A0$) / 49.5 ($1 \% \cdot A0$) / 99.5($1 \% \cdot A0$) / 179.5 ($1 \% \cdot A0$). #5 represents the errors given by multi-tone interharmonics: f0 = 50 Hz, A0 = 40 A with n = 1.5 ($5 \% \cdot A0$) / 7.5 ($10 \% \cdot A0$) / 49.5 ($1 \% \cdot A0$) / 179.5 ($1 \% \cdot A0$). #5 represents the errors given by multi-tone interharmonics: f0 = 50 Hz, A0 = 40 A with n = 1.5 ($5 \% \cdot A0$) / 7.5 ($10 \% \cdot A0$) / 49.5 ($1 \% \cdot A0$) / 179.5 ($1 \% \cdot A0$). #5 represents the errors given by multi-tone interharmonics: f0 = 50 Hz, A0 = 40 A with f0 = 7; 149; 951; 2048 Hz, $A0 = 1 \% \cdot A0$.)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

AG 2.32, Yeying Chen

2-channel precision ratio measuring system

- NI 5922 (24 bit A-to-D, 500 kS/s)
- Rated input voltages U_{pk} : ± 2 V and ± 10 V
- Resampling processing for time synchronization
- Measurement results:
 - processed on PC by a LabView-based software
 - based on DFT analysis ("frequency domain")

Figure 3: Photo of the 2-channel precision ratio measuring system (VRS)

AG 2.32, Yeying Chen

AG 2.32, Yeying Chen

1. Reference system for current sensors

- 2. Measurement under Power Quality (PQ) phenomena
- 3. Measurement uncertainties
- 4. Conclusion and Outlook

Measurement methods and test procedures for assessing accuracy of instrument transformers for power quality measurements

Short Name: IT4PQ, Project Number: 19NRM05

"This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme."

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

2. Measurement under PQ phenomena

Test plans

6 PQ phenomena (according to IEC 61000-4-7 and IEC 61000-4-30)

Table 3: Tests under various PQ phenomena and to measuring quantities

Performance Index	Quantity to Measure	Frequency deviation	Amplitude deviation	Harmonics and Interharmonics	Amplitude modulation	Phase modulation	Oscillatory Transient
$\epsilon(f_0) \& \delta(f_0)$	Datia and Dhasa	Х	Х	Х	Х	Х	Х
ε(f _n) & δ(f _n)	Ratio and Phase			х			
Abbreviation (Ab	b.) of tests	i) FD	ii) AD	iii) (I)H	iv) AM	v) PM	vi) OT

Table 3: Detailed test descriptions for current sensors.

Abb.	Detailed test descriptions	Abb.	Detailed test descriptions
i) FD	TPA: 42.5 Hz; TPB: 50 Hz; TPC: 57.5 Hz (at 100%)	iii)	Fundamental primary current: sinusoidal, $f_0 = 50$ Hz, $I_0 = 100$ A, $\varphi_0 = 0^{\circ}$
ii) AD	TP1: 1 % (class 0.2S), 5 % (class 0.5); TP2: 100 %; TP3:120% or 200% according to the CT specifications of max. current	(1)H	<i>h</i> ^{an} narmonic primary current: $t_h = h \cdot t_0$, $\phi_h = 0^{-1}$, $n = 3$; 11; 20; 50; (115;) 173 Dual-tone signal: $l_h = 1$ %; 3 %; 10 %; (40 %) of l_0 Multi-tone signal: $l_h = 10$ % (TP1) or 1 / <i>n</i> of l_0
			Interharmonic primary current: Dual-tope signal: TP1: 5 % at 75 Hz: TP2: 10 % at 375 Hz: TP3: 1 % at 2475 Hz
iv) AM	TP1: 10 % - 2 Hz; TP2: 10 % - 5 Hz;		Multi-tone signal: 1 % at 7 Hz, 149 Hz, 951 Hz, 2048 Hz (TP2)
v) PM	TP1: 10 % of 1 rad - 2 Hz; TP2: 10 % of 1 rad - 5 Hz;		
vi) OT	TP1: 500Hz; TP2: 1 kHz; TP3: 2 kHz TP4: 5 kHz, 22% of rated amplitude, 600 μs time constant		TP: Test Point

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

AG 2.32, Yeying Chen

Three different types of current sensors

- I. Inductive current transformers (CTs): CT #1, CT #2
- Electronic CT [LEM IT 200-S ULTRASTAB]: CT #3 II.
- III. Rogowski coil [LEM ART-B22-D70]: RC #4

Table 4: Technical specifications of the current sensors

Туре	In	ductive CTs	Electronic CT	Rogowski coil			
Abb.	CT #1	CT #2	CT #3	RC #4			
I _{Pr,X} in A	400	500	100	1000			
K _{n,X}	1 : 400	1 : 500	1 : 100	22.5 Mv : 1 kA			
I _{Sr,X} (U _{Sr,X})	1 A	1 A	100 mA	(50 Hz)			
Burden	5 VA	2.5 VA	10 Ω	10 kΩ			
Accuracy	CI. 0.2S	Cl. 0.5	-	Cl. 0.5			
	CT #1	CT #2	CT #3	RC #4			
Tests	i) vi)	ii); iii) without interharmonics	i) vi)	ii); iii) without interharmonics			
hysikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Instif							

AG 2.32, Yeying Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

Experimental results - Frequency and amplitude variations

AG 2.32. Yeving Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

National Metrology Institute

--•• FR 10A-5.05Ω

DT-H-100A-5Ω-I h

Δ DT-IH-400A-5Ω-1 inter

1000

f in Hz

f in Hz

Experimental results - Harmonics and interharmonics

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

AG 2.32. Yeving Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

2. nearly the same error for a given f_n with adequate current input

vi) OT National Metrology Institute

1000

13 of 18

10000

10000

2. Measurement under PQ phenomena (3)

Experimental results - Amplitude and Phase Modulations

 $\varepsilon_i(f_0)$ and $\delta_i(f_0)$ were almost identical

AG 2.32. Yeving Chen

$\frac{1}{p_{f,X}}$								
	Modulation parameters	Inductive CT - CI. 0.2S (400 A - 1 A -5 VA)		tion Inductive CT - CI. 0.2S Electro		on Inductive CT - CI. 0.2S Electronic CT - LEM 100 ers (400 A - 1 A -5 VA) (100 A - 0.1 A - 10 Ω)		CT - LEM 100 .1 A - 10 Ω)
		$\mathbf{\epsilon}_{i}(f_{0})$ in %	$\delta_{i}(f_{0})$ in crad	$\varepsilon_{i}(f_{0})$ in μ A/A	$\delta_{i}(f_{0})$ in µrad			
Amplitude	10 % / 2 Hz	0.15	0.05	-42	-27			
Modulation	10 % / 5 Hz	0.15	0.05	-42	-27			
Phase	10 % of 1 rad / 2 Hz	0.15	0.06	-42	-27			
Modulation	10 % of 1 rad / 5 Hz	0.15	0.06	-42	-28			

Table 7: Ratio and phase errors at 50 Hz of the inductive CT and the electronic CT with the nominal burden by amplitude and phase

Experimental results- Oscillatory Transient

CT #1

CT #3

			Table 8: Ratio and phase errors at 50 Hz of the inductive CT and the electronic CT with the non burden by damped oscillation signals ($I_0 = I_{PI,X}$).							
$\boldsymbol{\varepsilon}_{i}(f_{0})$ and $\boldsymbol{\delta}_{i}(f_{0})$ were almost identical				Oscillatory Transient		Inductive CT - Cl. 0.2S (400 A - 1 A -5 VA)		Electronic CT - LEM 100 (100 A - 0.1 A - 10 Ω)		
			$\varepsilon_{i}(f_{0})$ in %			$\delta = \delta_i(f_0)$ in crad	$\varepsilon_{i}(f_{0})$ in $\mu A/A$	$\delta_{i}(f_{0})$ in µrad		
				500	Hz, 600 µs	0.15	0.06	-41	-27	
				1 kl	Hz, 600 µs	0.15	0.06	-40	-28	
				2 kl	Hz, 600 µs	0.15	0.06	-41	-28	
				5 kl	Hz, 600 µs	0.15	0.06	-42	-27	
Tests	i) FD	ii) AD	iii) (I)H		iv) A	M	v) PM		vi) OT	
Physikalisch	Technische Bundesansta	alt 🔳 Braunschweig and	Berlin					Nationa	l Metrology Institu	

modulated signals (1, - 1, ...)

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

- 1. Reference system for current sensors
- 2. Measurement under Power Quality (PQ) phenomena
- 3. Measurement uncertainties
- 4. Conclusion and Outlook

Measurement methods and test procedures for assessing accuracy of instrument transformers for power quality measurements

Short Name: IT4PQ, Project Number: 19NRM05

"This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme."

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

AG 2.32, Yeying Chen

For $\varepsilon_i(f_n)$ and $\delta_i(f_n)$ – only for single tone up to 9 kHz (BW2: 20kHz, new 61869-1)

 $u_X = \sqrt{u_{MSE}^2 + u_{MF}^2 + (u_{Zb,X}^2 + u_N^2 + u_{Zb,N}^2 + u_{MS}^2)}$ in ppm and µrad

- Uncertainty (k = 2) of the reference systemat 50 Hz: $\pm 2 \cdot 10^{-5}$ for the ratio errors, $\pm 1 \cdot 10^{-5}$ for the phase errorsup to 9 kHz: $\pm 1 \cdot 10^{-4}$ for the ratio errors, $\pm 4 \cdot 10^{-4}$ for the phase errors

- Uncertainty (k = 2) of CT #1 to #3 at 50 Hz: $\pm 2 \cdot 10^{-5}$ for the ratio and phase errors up to 9 kHz: $\pm 3 \cdot 10^{-4}$ for the ratio errors, $\pm 6 \cdot 10^{-4}$ for the phase errors

 $\pm 6.10^{-4}$ for the ratio and phase errors

 $\pm 6.10^{-4}$ for the ratio errors, $\pm 1.10^{-4}$ for the phase errors

u_{MSE} :measured values (type A) *u_{MF}* :magnetic field influence between N and X *u_{Zb,X}* :burden for X

 u_N :the reference CT $u_{Zb,N}$:burden for N u_{MS} :the measuring system

> TBD: uncertainty under PQ test waveforms

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

- Uncertainty (k = 2) of RC #4

AG 2.32, Yeying Chen

at 50 Hz:

up to 9 kHz:

AG 2.32, Yeying Chen

- 1. Reference system for current sensors
- 2. Measurement under Power Quality (PQ) phenomena
- 3. Measurement uncertainties
- 4. Conclusion and Outlook

Measurement methods and test procedures for assessing accuracy of instrument transformers for power quality measurements

Short Name: IT4PQ, Project Number: 19NRM05

"This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme."

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute 17 of 18

Conclusion

- Reference system for CT (type independent) fully completed
- Uncertainty (k = 2) of the reference system (well below 10⁻³ up to 9 kHz, single tone):

at 50 Hz: $\pm 2 \cdot 10^{-5}$ for the ratio errors, $\pm 1 \cdot 10^{-5}$ for the phase errors

up to 9 kHz: $\pm 1.10^{-4}$ for the ratio errors, $\pm 4.10^{-4}$ for the phase errors

- Uncertainties of the measuring system with PQ test waveforms are underway
- errors at the fundamental of all CT types were almost identical with proposed PQ phenomena

Prospective work

- Validation of program integrated with PQ algorithms (uncertainty)
- Calibrations of the SAMU/MU under PQ phenomena; measurement uncertainties
- Comparison within IT4PQ ongoing

(Abbreviatio	on (Abb.)	i)	ii)	iii)	iv)	(V	vi)	vii)
Performance Index	Quantity to Measure	Frequency deviation	Amplitude deviation	Harmonics and Interharmonics	Amplitude modulation	Phase modulation	Frequency modulation	Oscillatory Transient
ε(f ₀) & δ(f ₀)	Batia and Bhasa	Х	Х	Х	Х	Х	Х	Х
ε(f _n) & δ(f _n)	Ralio and Fliase			Х				
Total frequency response error	Amplitude		to be Validated					
Composite error (Total Vector Error)	Combination of amplitude and phase				to be Validated	to be Validated	to be Validated	
Error peak magnitude	Peak magnitude							Validated in
Time shift error	Time shift							f domain
Decay time error	Time shift							ruomain

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

AG 2.32, Yeying Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

National Metrology Institute

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Bundesallee 100

- Duriuesallee 100
- 38116 Braunschweig

Enrico Mohns and Yeying Chen working group 2.32 " Time-synchronized Measuring Systems and Sensors "

Telefon: 0531 592-2354 E-Mail: <u>yeying.chen@ptb.de</u> www.ptb.de

2-channel precision ratio measuring system – uncertainties under PQ

|U|(f = 50 Hz) under various proposed PQ phenomena: $\pm 10 \times 10^{-6}$

Table 2: The standard uncertainties of the measuring system by 5t0 Hz with input voltage of 1 V under various PQ phenomena

	Frequency deviation	Harmonics / Interharmonics	Amplitude and Phase Modulation	Transient
<i>ε</i> (<i>f</i> ₀) in μV/V	-3	-3	-4	-5
$\delta(f_0)$ in µrad	-3	-5	-4	-4

|U|(f < 9 kHz) for multi- and dual-tone signals are below $\pm 200 \mu \text{V/V}$ and $\pm 300 \mu \text{rad}$ (conservative)

of the frequency response given by single-tone inputs of 100 mV, 1 V, and 5 V. #2 represents the results given by dual-tone harmonics: 1 V of the fundamental signal and 1 % of the harmonic signal. #3 represents the results given by multi-tone harmonics: 1 V of the fundamental signal and 1 / n of the nth harmonic signals.)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

AG 2.32, Yeying Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

National Metrology Institute

Acknowledgement

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

"The project 19NRM0 IT4PQ has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme."

Dr.-Ing. Enrico Mohns

Mr. Sören de Rose Mr. Micheal Seckelmann

Nur Malta Lieka Mur Döth

Mr. Malte Liske Mr. Räther Peter

Mr. Alexander Dubowik

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

AG 2.32, Yeying Chen

Reference measuring systems and experimental results related to CT/LPCT charcaterisation under PQ phenomena

National Metrology Institute

Technische Universität

B-IGS

Braunschweig

Graduate School

Braurist hweig International